Misuratore di portata Thermal Mass Serie S-TMASS

Manuale operativo

INDICE

Questo manuale operativo fornisce informazioni su installazione, connessione e messa in servizio del sistema di misura. Il personale tecnico deve leggere e approfondire le note sulla sicurezza e le istruzioni riportate e conservare il manuale a portata di mano.

1. Sicurezza	pag. 3
2. Specifiche tecniche	<u>pag. 5</u>
3. Costruzione meccaniche e dimensioni	<u>pag. 6</u>
4. Installazione	<u>pag. 8</u>
5. Cablaggio	<u>pag. 12</u>
6. Display ed elementi operativi	<u>pag. 16</u>
7. Configurazione dei parametri	<u>pag. 17</u>
8. Descrizione dei parametri e protocollo di comunicazione	<u>pag. 22</u>
9. Ricerca guasti	<u>pag. 23</u>
10. Appendice I Densità e coefficiente di conversione per gas comuni	<u>pag. 25</u>
11. Appendice II Valore di fondoscala per gas comuni	<u>pag. 28</u>

Dopo la conclusione del lavoro di redazione di questo manuale, è possibile che i dati riportati abbiano subito variazioni per motivi tecnici. Il presente documento riportata una selezione delle versioni disponibili. Per qualsiasi dubbio e informazione, contattare SMERI (tel. +39 02 539 8941; e-mail: smeri@smeri.com).

1. SICUREZZA

Il sistema di misura descritto è destinato alla misura di portata dei gas in base alla principio della dispersione termica.

Deve essere applicato nel rispetto delle specifiche tecniche e valutando l'idoneità dei materiali con il prodotto (nel dubbio consultare SMERI).

Un uso improprio, diverso da quello per cui è stato sviluppato, non è consentito. Sono vietate le modifiche, se non autorizzate, perché potrebbero creare pericoli imprevisti.

Questo sistema di misura è stato progettato in base alle più recenti procedure di buona ingegneria, è stato collaudato e ha lasciato la fabbrica in condizioni tali da essere usato in completa sicurezza.

Il personale tecnico addetto deve essere qualificato e autorizzato dal responsabile dell'impianto a eseguire gli interventi di installazione, messa in servizio, funzionamento, diagnostica e manutenzione. Deve approfondire questo manuale, rispettare le indicazioni riportate e, anche, le norme locali e nazionali applicabili. Durante gli interventi, deve indossare sempre gli equipaggiamenti per la protezione personale.

SMERI srl non è responsabile di eventuali danni dovuti a un uso improprio, non conforme allo scopo applicativo per cui è stato sviluppato questo misuratore di portata.

Per qualsiasi non conformità, dubbio o modifica: contattare l'ufficio tecnico **SMERI** (tel. +39 02 539 8941; e-mail: smeri@smeri.com).

1.1 Ricevimento, trasporto, immagazzinamento

Alla consegna, verificare che l'ordine sia conforme ai documenti di spedizione e alla targhetta del dispositivo fornito. Controllare che gli imballaggi e la merce consegnata non siano danneggiati.

Il sistema di misura deve essere trasportato fino al punto di installazione utilizzando l'imballaggio originale. Evitare qualsiasi urto o caduta, che possono danneggiare il misuratore e ridurre l'accuratezza delle misure.

Per l'immagazzinamento, utilizzare gli imballaggi originali e scegliere luoghi asciutti, non polverosi e protetti dalle intemperie.

1.2 Avvisi importanti e note sulla sicurezza

Simboli degli avvisi

Pericolo Il non rispetto di questo avviso può causare lesioni personali, anche letali.

Attenzione Il non rispetto di questo avviso può causare lesioni personali o danni al dispositivo e all'impianto.

Divieto Indica interventi e procedure non consentiti.

	Selezionare un dispositivo antideflagrante per applicazioni in area pericolosa
4	Controllare che la targhetta del dispositivo riporti gli identificativi della certificazione per area sicura e la classe di temperatura. In assenza di queste indicazioni, il dispositivo non può essere utilizzato in area pericolosa.
	La classe di temperatura del dispositivo per la sicurezza antideflagrante deve rispettare i requisiti di temperatura e protezione antideflagrante dell'impianto. Verificare la conformità della certificazione per area sicura e la classe di temperatura.
	La classe di protezione del dispositivo deve rispettare i requisiti delle condizioni operative locali. La classe di protezione locale deve essere inferiore o uguale a quella del dispositivo.
<u>/•</u>	Verificare il tipo di alimentazione
	Al momento dell'ordine si può selezionare un tipo di alimentazione 220 VAC o 24 VDC. Accertarsi del tipo di alimentazione prima di eseguire il cablaggio.
	Verificare le condizioni ambiente e la temperatura del fluido
	Le condizioni ambiente e la temperatura del fluido devono essere inferiori al valore nominale del dispositivo (<u>v. Specifiche a pag. 5</u>).
	Verificare la pressione ambiente presente in loco e la pressione massima del fluido
	Devono essere inferiori al valore nominale del dispositivo (v. Specifiche a pag. 5).
	Requisiti extra per fluidi speciali
	Alcuni gas hanno proprietà speciali e di conseguenza si deve ordinare un dispositivo specifico. Verificare che il misuratore soddisfi i requisiti locali prima di eseguire l'installazione.
	Nel caso di dubbi sul modo di funzionamento del dispositivo o se danneggiato, non utilizzarlo. Contattare SMERI.
	Non aprire il dispositivo, se è impiegato in area pericolosa.
\bigcirc	Prima di eseguire i cablaggi, disattivare l'alimentazione.
	Installazione con giunto a compressione e manutenzione non sono consentite, se la pressione del fluido è troppo alta (5 volte la pressione atmosferica standard o superiore). Ridurre la pressione a livelli di sicurezza o disattivare il processo.
	Installazione hot-tap e manutenzione non sono consentite in presenza di gas pericolosi per la salute. Disattivare il processo o applicare procedure per garantire condizioni sicure.

2. SPECIFICHE TECNICHE

Dati tecnici	
Fluido misurato	Molti tipi di gas (eccetto acetilene)
Dimensioni del tubo	DN10-DN4000
Velocità	0,1-100 Nm/s
Accuratezza	±12,5%
Temperatura operativa	Sensore -40220°C (350 °C in opzione); trasmettitore -20+45 °C
Pressione operativa	Sensore a inserzione e sensore flangiato: pressione del fluido \leq 1,6 MPa Pressioni speciali: contattare SMERI.
Alimentazione	Versione compatta: 24 VDC o 220 VAC, consumo corrente ≤18 W Versione separata: 220 VAC, consumo corrente ≤19 W
Tempo di risposta	1 s
Uscita	4-20 mA (isolamento optoelettronico, carico max. 500 Ω), impulsi,
	RS485 (isolamento optoelettronico) e HART
Uscita di allarme	1-2 relè di rete, stato normalmente aperto, 10 A/ 220 VAC o 5A/ 30 VDC
Tipo di sensore	A inserzione standard, con giunto a compressione, flangiato
Esecuzione	Compatta o separata
Materiale del tubo	Acciaio al carbonio, acciaio inox, materiale plastico
Materiale della custodia del sensore	SS304 o SS316
Classe di protezione	IP65
Display	LCD a 4 righe per portata massica, portata volumetrica alle condizioni standard, totalizzatore di portata, marcatura data/ora, tempo di funzionamento, velocità di deflusso, ecc.

5

3. COSTRUZIONE MECCANICA E DIMENSIONI

3.1 Costruzione e struttura del dispositivo

Il sensore del misuratore di portata a inserzione in versione compatta deve essere inserito considerando l'asse della tubazione (v. <u>Procedura di installazione</u>) e la lunghezza del sensore dipende dalla dimensione della tubazione.

Ø nom.	Ø est. flangia	Foro centr.	Foro vite	Filett. vite	Super ten	ficie di uta	Spess. flangia	Lungh. tubo
DN	D	K	NxL		d	f	С	L
15	95	65	4x14	M12	46	2	14	280
20	105	75	4x14	M12	56	2	16	280
25	115	85	4x14	M12	65	2	16	280
32	140	100	4x18	M16	76	2	18	350
40	150	110	4x18	M16	84	2	18	350
50	165	125	4x18	M16	99	2	20	350
65	185	145	4x18	M16	118	2	20	400
80	200	160	8x18	M16	132	2	20	400
100	220	180	8x18	M16	156	2	22	500

3.2 Dimensioni

Questa tabella si riferisce a una pressione di 1,6 Mpa; se superiore, contattare SMERI per definire le specifiche.

Per DIN 15-80, il misuratore può essere realizzato con connessione filettata.

7

4. INSTALLAZIONE

4.1 Principio di misura

Questi misuratori di portata si basano sul principio della dispersione termica: il gas che fluisce nel tubo sottrae calore a un corpo riscaldato.

A questo scopo, il misuratore di portata comprende due sensori di temperatura: uno misura la temperatura attuale del gas, che è il valore di riferimento. Il secondo sensore è riscaldato mantenendo una temperatura differenziale costante tra i due sensori

Quando il gas comincia a scorrere nel tubo di misura, il sensore di temperatura riscaldato si raffredda al suo passaggio e tale effetto di raffreddamento è direttamente proporzionale alla velocità di deflusso. La corrente elettrica necessaria per mantenere il differenziale di temperatura è, di conseguenza, una misura diretta della portata massica.

La formula è:

$$V = K [Q/\Delta T]^{1.87} / \rho_g$$

Dove:

 ρ_g = gravità specifica del fluido V = velocità K = coefficiente di equilibrio Q = potere calorico Δ T = temperatura differenziale

La gravità specifica del fluido è correlata alla densità:

$$\rho = \rho_{\rm n} \times \frac{101.325 + P}{101.325} \times \frac{273.15 + 20}{273.15 + T}$$

Dove:

 ρ_g = densità del fluido alle condizioni operative (kg/m³)
 P = densità del fluido alle condizioni standard (101.325kPa e 20 °C; kg/m³)
 T = temperatura alle condizioni operative (kPa)

Le due formule evidenziano una certa correlazione funzionale tra velocità e pressione alle condizioni operative e tra densità del fluido e temperatura alle condizioni operative.

Dato che la temperatura del sensore è sempre di 30 °C superiore alla temperatura del fluido (ambiente) e che il misuratore si basa sul metodo della temperatura differenziale costante, il misuratore di portata non richiede di regola una compensazione della temperatura e della pressione.

4.2 Posizione di installazione

Questo misuratore a principio termico richiede un profilo di portata completamente sviluppato per garantire misure corrette. Di conseguenza, considerare quanto segue prima di installare il dispositivo:

- Rispettare i requisiti per i tratti rettilinei in entrata e uscita.
- Per installazione e interventi sulla tubazione sono richieste le buone pratiche di ingegneria.
- Garantire il corretto allineamento e orientamento del sensore.
- Prevedere degli accorgimenti per ridurre o evitare la formazione di condensa (ad es. installare una trappola di condensa, coibentare, ecc.).
- Rispettare tassativamente la temperatura ambiente consentita e il campo di temperatura del fluido.
- Installare il trasmettitore in una posizione ombreggiata o utilizzare un tettuccio di protezione dai raggi solari.
- Per ragioni meccaniche e per proteggere il tubo, si consiglia di supportare i sensori pesanti.
- Non installare dove sono presenti forti vibrazioni.
- Non esporre ad ambienti che contengono molto gas corrosivo.
- Non condividere l'alimentazione con convertitori di frequenza, saldatrici elettriche e altre apparecchiature, che possono interferire sulla linea di alimentazione.
 Se necessario, aggiungere uno stabilizzatore di corrente per l'alimentazione del trasmettitore.

4.3 Coibentazione

Se il gas è molto umido o saturo d'acqua (ad es. biogas), la tubazione e il corpo del misuratore di portata devono essere isolati per evitare la formazione di gocce d'acqua sul sensore di misura.

a = altezza di isolamento massima per il sensore flangia

b = altezza di isolamento massima per il sensore a inserzione

- Il principio della dispersione termica è influenzato da condizioni di flusso disturbato.
- Di regola, questo misuratore di portata deve essere installato sempre il più lontano possibile da qualsiasi disturbo di flusso. Per maggiori informazioni v. ISO 14511.
- Se sono presenti due o più elementi di disturbo a monte del misuratore, si deve prevedere la lunghezza del tratto in entrata massima consigliata. Ad es., se è presente una valvola prima di una curva a monte del misuratore, è richiesto un tratto di 50 x DN dalla valvola al misuratore di portata.
- Con gas molto leggeri, come elio e idrogeno, per tutti i disturbi a monte i devono considerare dei tratti rettilinei doppi.

9

4.4 Tratti rettilinei in entrata e in uscita

I valori minimi consigliati (senza raddrizzatore di flusso) sono:

Sensore flangiato

1 = riduzione, 2 = espansione, 3 = angolo a 90° o elemento a T, 4 = 2 angoli a 90°,

5 = 2 angoli a 90° (tridimensionale), 6 = valvola di controllo

Sensore a inserzione

1 = riduzione, 2 = espansione, 3 = angolo a 90° o elemento a T, 4 = 2 angoli a 90°, 5 = 2 angoli a 90° (tridimensionale), 6 = valvola di controllo o regolatore di pressione

4.5 Requisiti per la tubazione

Attenersi sempre a una buona prassi ingegneristica:

- Tecniche di preparazione, saldatura e finitura corrette
- Tenute di dimensioni adatte
- Flange e guarnizioni allineate correttamente
- · Elementi di connessione del tubo adatti al diametro interno del misuratore
- Massima differenza di corrispondenza per i diametri del tubo:
 -1 mm (0.04") per diametri < DN 200 (8"); -3 mm (0.12") per diametri ≥ DN 200 (8")
- Nelle nuove installazioni, eliminare tutte le particelle libere, metalliche e abrasive per evitare di danneggiare gli elementi sensibili durante la prima messa in servizio.

Per maggiori informazioni, v. ISO 14511.

4.6 Procedura di installazione

Base del misuratore di portata "thermal mass

Base del tipo a inserzione con giunto a compressione

Non eseguire saldature in area pericolosa

Eseguire le saldature nel rispetto dei requisiti per area pericolosa

Per l'installazione, posizionare la base sulla tubazione in modo che il foro passante della base sia perpendicolare all'asse della tubazione.

Il punto di saldatura della base e l'esecuzione della saldatura devono essere come segue:

Prima di eseguire la saldatura, la base deve essere posizionata contro l'arco circolare del tubo per garantire la tenuta

4.7 Installazione del tipo a inserzione standard

Identificare una posizione idonea al misuratore di portata. Verificare il diametro interno e lo spessore della parete del tubo.

- Posizionare l'estremità del sensore in una valvola a sfera e calcolare la lunghezza di inserzione in base al diametro interno e allo spessore della parete del tubo. Il dado non deve essere serrato manualmente.
- Ruotare l'asta di connessione del sensore in modo che il contrassegno di direzione sul sensore sia rivolto nella direzione del flusso.
- In base ai dati calcolati in loco, verificare la lunghezza di inserzione in base alla taratura sull'asta di connessione e serrare il dado saldamente.
- Se il misuratore è installato in verticale, il display può essere montato a 90°,180° o 270° in base ai requisiti.

4.8 Installazione del tipo a inserzione con giunto a compressione

- Prima di eseguire l'installazione, verificare il tipo di connessione e installare i raccordi.
- Prima di eseguire l'installazione, disattivare il processo e attenersi attentamente alle norme dell'impianto.
- In base ai requisiti di lunghezza del misuratore, tagliare il tubo e montare flange e bulloni sul tubo.
- Garantire che il contrassegno della direzione sul misuratore sia rivolto nella direzione del flusso, che il display sia perpendicolare al piano orizzontale, che l'asse della tubazione sia parallela al piano orizzontale. L'errore non deve essere maggiore di ±2.5; fissare il misuratore con i bulloni.

5. CABLAGGIO

Controllare il tipo di alimentazione

Non intervenire sul misuratore, se è in funzione

5.1 Istruzioni per la connessione del sensore

1	2	3	4
RT1 RT2		RH1	RH2
Sensore di temperatura (Pt1000)		Riscalo (Pt	datore 20)

5.2 Istruzioni per la connessione del trasmettitore

5.3 Connessione dell'alimentazione

1. Alimentazione AC

2. Alimentazione CC

24VDC, 500mA

5.4 Connessione delle uscite

Uscita 4-20 mA a 4 fili e operatore HART

5.4 Connessione dell'uscita RS485

5.4 Connessione dell'uscita a impulsi

5.4 Connessione dell'uscita di allarme

6. DISPLAY ED ELEMENTI OPERATIVI

6.1 Display LCD

6.2 Riga dei comandi

ОК	ll misuratore esegue l'autodiagnosi. Se al termine il sistema è in condizioni corrette visualizza OK, altrimenti ERR. Le informazioni sull'errore sono reperibili nel menu di configurazione "Self-Checking".
AL1	Informazioni sull'allarme. AL1 è l'allarme del canale 1, AL2 è l'allarme del canale 2.
mA	Se l'uscita in corrente supera 20 mA, è visualizzato mA, altrimenti non è indicato nulla.
ον	Se i parametri operativi sono superati (overflow), è visualizzato OV, altrimenti non è indicato nulla.
1K	Per migliorare la visualizzazione e la lettura, se la portata totale supera 10.000.000, è visualizzato 1K e la portata totale visualizzata è moltiplicata per 1000.
00103	Informazioni sullo stato della comunicazione. Le prime 3 cifre indicano l'indirizzo del dispositivo; la 4. cifra indicata parity check (0: none; 1: odd: 2: even) e la 5. cifra indica la velocità di trasmissione (baude rate 0: 1200; 1: 2400; 2: 4800; 3: 9600).

Non appena attivato, il misuratore esegue l'autodiagnosi (v. sopra OK). Se il sistema risulta corretto, il misuratore accede direttamente al menu principale.

Se il sistema non risulta in condizioni corrette, il misuratore visualizza il sottomenu dell'errore rilevato dall'autodiagnosi (v. dettagli nel menu "Self-Checking". Dopo qualche secondo (1-2) il misuratore accede automaticamente al menu principale.

Il misuratore dispone di 3 tasti funzione: F1, F2 e F3. Per le funzioni speciali dei tasti, seguire le istruzioni indicati in basso sul display LC.

7. CONFIGURAZIONE DEI PARAMETRI

Nel menu principale, premere F2 per accedere al menu di configurazione.

Nel menu di configurazione, premere F1 e F2 contemporaneamente per tornare al menu principale.

7.2 Menu di configurazione (Setup Menu)

Nel menu principale, premere F2 per accedere al menu di configurazione.

Premere quindi F1 per selezionare un sottomenu e F2 per accedere al sottomenu evidenziato.

- --Setup menu--
- 1. Unit Display
- 2. Self-Checking
- 3. Total Reset
- 4. Parameter Setup
- 5. Calibration
- 6. Password
- 7. Query

7.3 Indicazione delle unità (Unit display)

Nel menu di configurazione, premere F1 per selezionare "Unit Display" e premere F2 per accedere.

Premere F1 per selezionare l'unità ingegneristica di portata o totale e premere F3 per impostarla.

"Flow". unità di portata.

Opzioni disponibili: Nm³/h, Nm³/min, Nl/h, Nl/min, t/h, t/min, kg/h e kg/min.

"Total": unità di portata totale. Si può selezionare Nm³, Nl, t e kg. Selezionare l'unità richiesta e premere quindi F2; il menu principale è visualizzato con l'unità configurata.

7.4 Autodiagnosi (Self-Checking)

Nel menu di configurazione, premere F1 per selezionare "Self-Checking" e premere F2 per accedere.

Se il misuratore visualizza ERR nel menu principale, accedere a questo sottomenu per controllare i dettagli dello stato di funzionamento. Il segno di spunta indica che è ok, x che il parametro non è anomalo. Dopo l'accensione, il misuratore esegue l'autodiagnosi e in presenza di una o più anomalie visualizza il menu di autodiagnosi. Si può accedere a questo menu anche durante il funzionamento del misuratore.

17

Flow: Nm3/h Total: Nm3

Shift Enter Mod

7.5 Reset completo (Total Reset)

Nel menu di configurazione, premere F1 per selezionare "Total Reset" e premere F2 per accedere.

Premere F1 per accedere alla password, inserire la password per il reset (predefinita 000000), premere F1 per scorrere le cifre e F3 per modificare la cifra evidenziata. Al termine dell'inserimento della password, premere F2 per accedere al sottomenu del reset completo.

Premere F1 e F2 contemporaneamente per eseguire il reset completo. Al termine, il display visualizza 0000000.0000. In questo sottomenu, si può premere F2 per accedere al reset del tempo di funzionamento.

L'unità di misura del tempo di funzionamento è il minuto. Il tempo maggiore è di 8 cifre e la procedura di azzeramento è la medesima del reset completo.

Al termine, premere F2 per ritornare al menu principale.

7.6 Configurazione dei parametri (Parameter Setup)

Nel menu di configurazione, premere F1 per selezionare "Parameter Setup" e premere F2 per accedere a "Password Setup". Inserire la **password** (predefinita 000000), scorrere le cifre con F1 e premere F3 per modificare il numero. Quando sono state inserite tutte le cifre, premere F2 per confermare e accedere al menu Language.

Premere F3 per selezionare la **lingua** ("Language") del display. La password per modificare la lingua è 321456. Premere quindi F2 per terminare l'impostazione e inserire l'ID equivalente.

Il parametro "Equivalent ID" serve per configurare il **diametro interno del tubo**. Se il tubo è a sezione rettangolare, si deve inserire un diametro interno equivalente. L'unità sono i mm. Il campo è da 0000,000 fino a 9999,999. Premere quindi F2 per accedere al coefficiente di filtro.

Coefficiente del filtro (Filter Coe) Se la portata presenta forti fluttuazioni, aumentare questo valore per ottenere una lettura stabile. Il campo è 0...32,0; 0 indica senza filtro. Premere quindi F2 per accedere al taglio di bassa portata.

000000 Shift Enter Mod	Reset F	Password	
Shift Enter Mod		00000	0
	Shift	Enter	Mod

Total Res	set	
00	0.00000	000
Reset	Enter	Reset

Running Time Reset			
00	000000	min	
Reset	Enter	Reset	

Password Setup			
	0000	00	
Shift	Enter	Mod	

Language			
	Engli	sh	
Shift	Enter	Mod	

Equivalent ID				
	0100.00	0 mm		
Shift	Enter	Mod		

Filter Coe		00	
Shift	Enter	Mod	

ll novemente "I ou flour outoff" come novime octore il toglio di bocco	
portata in base alle condizioni correnti. L'unità ingegneristica è la	Low Flow Cutoff
medesima della portata.	000000.000
ll campo e 0000,00009999,9999. Premere guindi F2 per accedere alla configurazione della densità alle	Shift Enter Mod
condizioni standard.	
"Density SC" (densità alle condizioni standard).	Density SC
(20 °C; 101.325 KPa). Utilizzata per la visualizzazione della portata.	1.0000 Ka/m3
	1.0000 Ng/mo
	Shift Enter Mod
Il coefficiente di conversione ("Conversion Coe") del misuratore è il	Medium: 00
Il misuratore conosce il coefficiente di conversione di 59 gas. Il	Air Conversion Coe: 01 0000
coefficiente deve essere calcolato, se si tratta di una miscela di gas.	
nell'Appendice I (<u>pag. 25)</u> .	Shift Enter Mod
Premere quindi F2 per accedere alla portata di fondoscala.	·
"Full Scale Flow" (portata di fondoscala) corrisponde all'uscita 4-20 mA	Full Scale Flow
e l'unità ingegneristica è la medesima della portata.	000000 000
Premere quindi F2 per accedere alla comunicazione RS485.	
	Shift Enter Mod
Configurazione della comunicazione RS485 . Il campo dell'indirizzo del misuratore ("Address") è 0255.	Address: 001
La velocità di trasmissione ("Baud") può essere di 1200, 2400, 4800 e	Baud: 9600
9600 baud. Parity check può essere selezionato none (nessuno), odd (dispari) e even	Parity: None
(pari).	Shift Enter Mod
Premere quindi F2 per accedere alla configurazione HART.	
Configurazione della comunicazione HART.	HART Address: 00
Il campo dell'indirizzo HART ("HART Addresss") è 0015. Se la protezione è disattivata ("Protect: Close") l'operatore può scrivere	Protect: Close
i dati; se la protezione è attivata ("Protect: Open") l'operatore non può	
modificare/inserire i dati.	Shift Enter Mod

Premere quindi F2 per accedere al parametro dell'uscita in frequenza.

6	6		
	_	IV	

Uscita in frequenza: impulsi ("Pulse") ed equivalente ("Equivalent")

Se si seleziona "Pulse" (portata), il primo valore di "Freq" è la frequenza d'impulso, che corrisponde alla **portata 0** e

Il secondo valore di "Freq" è la frequenza d'impulso, che corrisponde alla **portata massima**.

Premere quindi F3 per passare all'uscita equivalente.

Se si seleziona "Equivalent" (portata totale), si deve impostare il **coefficiente equivalente**.

Il coefficiente più alto è 1000.

Premere quindi F2 per accedere all'allarme del canale 1.

Allarme del canale 1.

Impostare l'allarme di portata massima (soglia di portata superiore, "Upper flow"), di portata minima (soglia di portata inferiore, "Lower flow"), della temperatura massima (soglia di temperatura superiore, "Upper temp"), della temperatura minima (soglia di temperatura inferiore, "Lower temp") o nessun allarme.

Il **valore di differenza** ("Diff") serve per evitare gli allarmi in prossimità del valore di allarme massimo. Questo valore porta l'allarme in una zona controllata, ma riduce la precisione del controllo.

Impostare questo valore in base all'applicazione e all'esperienza.

Allarme del canale 2

La procedura di configurazione è la medesima di quella per l'allarme del canale 1.

L'impostazione di **data/ora** ha effetto sull'interrogazione dei dati e sul salvataggio. Di conseguenza, impostare la data e l'ora prima di registrare i dati.

Output: Freq: 0 Range:	Pulse 000-5000H 0000100.	Hz 000
Shift	Enter	Mod

Output: Equivalent Coe: 0000.0000			
Shift	Enter	Mod	

Alarm 1: upper flow Alarm: +000000.000 Diff: 000.000 Shift Enter Mod

Alarm Alarm: Diff: 00	2: upper +000000 00.000	flow).000	
Shift	Enter	Mod	

Date and	I Time: 2012-05-1 09:13:29	6
Shift	Enter	Mod

21

7.7 Taratura (Calibration)

I parametri di questo sottomenu sono molto importanti. Prima di accedere a questo sottomenu si deve inserire la relativa password. Questa protezione serve per prevenire accessi e interventi non autorizzati e non corretti.

Nel menu di configurazione, premere F1 per selezionare "Calibration" e premere F2 per accedere.

Inserire la **password** per accedere al sottomenu di taratura.

Premere quindi F2 per passare alla configurazione del valore di tensione zero.

Questo parametro serve per impostare il valore di tensione (Zero Volt") quando la portata è 0.

Verificare prima, che la portata in tubazione sia zero e attendere più di 30 s affinché il flusso sia fermo.

Premere i tasti F1 e F3 simultaneamente finché il misuratore non visualizza il buon fine dell'operazione ("Successs").

Questo valore può essere inserito manualmente. Premere F3 per selezionare "Input" e digitare il valore. Premere quindi F2 per inse valore R ("R Value", v. prossimo parametro).

Nota: Non inserire il valore di tensione zero quando il misuratore funzione.

	Shift	Enter	Mod
erire il	Zero V 0.6500 Please	′olt: Input)V e confirm	the flow is 0
è in	Shift	Enter	Mod

Questo parametro ("R Value") serve per inserire il valore di resistenza
del sensore di temperatura.
Premere quindi F2 per passare alla tabella di velocità.

1000.000 Ω			
Shift	Enter	Mod	

Il parametro "Current" consente la taratura della corrente. Se l'uscita in corrente presenta una deviazione, questo sottomenu serve per tarare questa uscita.

Premere F" per inserire la corrente zero e il coefficiente di corrente.

Taratura della corrente zero e del coefficiente di taratura.
Nota: Quasti valari nan davana assara madificati sa il misuratora s

Nota: Questi valori non devono essere modificati se il misuratore di portata è in funzione.

Zero: +0.0000 Coe: 1.0000			
Shift	Enter	Mod	

Mod

Password			
000000			
Shift	Enter	Mod	

Zero \ 0.6500 Please	/olt: Meas)V e confirm	sure the flow is
Shift	Entor	Mod

0

R Value (0°C):

Current: 4mA

Shift

Actual: 00.0000

Enter

7.8 Password

In questo sottomenu si possono modificare **le password di accesso ad** alcuni parametri.

Nel menu di configurazione, premere F1 per selezionare "Password" e premere F2 per accedere.

In questo menu si possono impostare le **password del reset completo** ("Total"), **del reset dei parametri** ("Reset") e **della taratura** ("Calibration").

Dopo aver inserito le password, premere F2 per salvare la configurazione. Il display LC visualizza "Successs" e ritorna al menu principale.

			_
Passv	vord		
Total	Reset	Calibration	
Shift	Enter	Mod	

Setup Old: 00 New: 0	Passwor 0000 00001	rd:
Shift	Enter	Mod

7.9 Interrogazione dei dati (Query)

Nel menu di configurazione, premere F1 per selezionare "Query" e quindi premere F2 per accedere.

Nel sottomenu, sono disponibili l**e registrazioni giornaliere ("Day** Record"), mensili ("Month Record") e annuali ("Year Record").

In questo sottomenu, premere F1 per selezionare "Day Record" e premere F2 per accedere.

Premere quindi F1 per spostare il cursore e F3 per modificare la data. Nell'esempio a lato, "80.03 Nm3" è lo stato del totalizzatore registrato il 2 aprile 2012.

Per visualizzare i dati mensili e annuali, la procedura di interrogazione è la medesima.

Day Record 2012-04-02			
80.03 Nm3 Shift Enter Mod			

Misuratore di portata S-TMASS Protocollo di comunicazione (MODBUS—RTU)

Command:03 (HOLDING REGISTER)

Floating point: IEEE-754, ;Endianness: 3-4-1-2

Holding register:

40001-2:	Floating point, Medium temperature(°C);	
40003-4:	Floating point,	
40005-6:	Floating point, Standard volcity (Nm/s);	
40007-8:	Floating point, Standard Flow (Nm3/h);	
40009-10:	Floating point, Total of more than one hundred (1234)	;
40011-12:	Floating point, Total of less than one hundred (87.89)	;
	Total = $1234 \times 100 + 87.89 = 123487.89$;	
40013:	Alarm status;	
	0001—Standard flow upper alarm;	
	0002—Standard flow lower alarm;	
	0004—Temperature upper alarm;	
	0008—Temperature lower alarm;	
40014:	Total unit;	
	0000: Nm3;	
	0001: N liter;	
40015-18:	Reserve:	
40019:	Bit	
	O(low):Clock test. 1:error; 0:ok;	
	1 :Power test. 1:error; 0:ok;	
	2 :EEPROM test. 1:error; 0:ok;	
	3 :AD convertertest. 1:error; 0:ok;	
	4 :Parameter test. 1:error; 0:ok;	
	5 :amplifier test. 1:error; 0:ok;	
	6 :TMF sensor test. 1:error; 0:ok;	
	7 :Reserve;	
	8 :Equivalent overflow. 1:error; 0:ok;	
	9 :Total overflow. 1:error; 0:ok;	
	10 :4-20mA output overflow. 1:error; 0:ok;	
	<pre>11 :Temperature overflow. 1:error; 0:ok;</pre>	
	12 : Reserve;	
	13 : Reserve;	
	14 : Reserve;	
	15 : Reserve;	
40020:	Reserve	

9. RICERCA GUASTI

Guasto Causa		Rimedio
Nessuna	1. Assenza di alimentazione	Alimentare il misuratore di portata
indicazione sul display	2. Alimentatore a commutazione danneggiato	Attivare l'alimentazione. Se l'indicatore di alimentazione non si accende, significa che SMPS è danneggiato. Contattare SMERI.
	 I cablaggi a 24 VDC sono invertiti Display LC posizionato non correttamente Display LC danneggiato 	Controllare le connessioni, correggerle Reinstallare il display Controllare se l'indicatore di alimentazione è acceso. Se è acceso, significa che il display è danneggiato. Contattare SMERI
Ridotta velocità	1. Le connessioni del sensore sono	Ricablare o reinstallare il sensore
	invertite	
	2. Sensore sporco	Pulire il sensore
	3. Sensore danneggiato	Contattare SMERI
	4. Alcuni parametri di portata non sono impostati correttamente	Verificare la relativa configurazione
Velocità anomala e forti fluttuazioni	 Alcuni parametri di velocità non sono impostati correttamente 	Verificare la relativa configurazione
	2. Uscita instabile o fluttuante	Aumentare il filtro del sistema
	3. Sensore sporco	Pulire il sensore
	4. Sensore danneggiato	Contattare SMERI
Uscita 4-20 mA	1. Il campo 4-20 mA non è corretto	Correggere le impostazioni
anomaia	2. Il trasmettitore è guasto	Contattare SMERI
	3. La connessione non è un circuito chiuso	Verificare la connessione
Uscita in frequenza anomala	 Alcuni parametri per l'impostazione della frequenza non sono corretti 	Correggere le impostazioni
	2. Il trasmettitore è guasto	Contattare SMERI
	 Il cavo di collegamento è danneggiato 	Verificare la connessione

Ricerca guasti (continua)

Guasto	Guasto Causa	
Allarme anomalo	 Alcuni parametri non sono impostati correttamente 	Correggere le impostazioni
	2. Il misuratore non ha una funzione Contattare SMERI di allarme	
	3. Il relè è danneggiato	Contattare SMERI
Uscita RS485 anomala	 L'impostazione della velocità di trasmissione e dell'indirizzo non è corretta 	Correggere le impostazioni
	2. I cablaggi sono invertiti	Eseguire di nuovo le connessioni
	 Il cavo di collegamento è danneggiato 	Verificare la connessione

10. APPENDICE I

Densità e coefficiente di conversione per gas comuni

Le tarature del sensore sono eseguite in laboratorio con aria. In caso di misure con gas differenti, convertire il valore usando la tabella sottostante con il relativo coefficiente di conversione.

	Gas	Calore spec.	Densità	Coefficiente
	Gas	(Kal/g*℃)	(g/l, 0℃)	conversione
0	Air	0.24	1.2048	1.0000
1	Argon (Ar)	0.125	1.6605	1.4066
2	Arsine (AsH ³)	0.1168	3.478	0.6690
3	Boron Tribromide (BBr ³)	0.0647	11.18	0.3758
4	Boron Trichloride (BCl ³)	0.1217	5.227	0.4274
5	Boron Trifluoride (BF ³)	0.1779	3.025	0.5050
6	Borane (B ² H ⁶)	0.502	1.235	0.4384
7	Carbon Tetrachloride (CCl ⁴)	0.1297	6.86	0.3052
8	Carbon Tetrafluoride (CF ⁴)	0.1659	3.9636	0.4255
9	Methane (CH ⁴)	0.5318	0.715	0.7147
10	Acetylene (C ² H ²)	0.4049	1.162	0.5775
11	Ethylene (C ² H ⁴)	0.3658	1.251	0.5944
12	Ethane (C ² H ⁶)	0.4241	1.342	0.4781
13	Allylene (C ³ H ⁴)	0.3633	1.787	0.4185
14	Propylene (C ³ H ⁶)	0.3659	1.877	0.3956
15	Propane (C ³ H ⁸)	0.399	1.967	0.3459
16	Butyne (C ⁴ H ⁶)	0.3515	2.413	0.3201
17	Butene (C ⁴ H ⁸)	0.3723	2.503	0.2923
18	Butane (C ⁴ H ¹⁰)	0.413	2.593	0.2535
19	Pentane (C ⁵ H ¹²)	0.3916	3.219	0.2157
20	Carbinol (CH ³ OH)	0.3277	1.43	0.5805
21	Ethanol (C ² H ⁶ O)	0.3398	2.055	0.3897
22	Trichloroethane (C ³ H ³ Cl ³)	0.1654	5.95	0.2763
23	Carbon Monoxide (CO)	0.2488	1.25	0.9940
24	Carbon Dioxide (CO ²)	0.2017	1.964	0.7326
25	Cyanide (C ² N ²)	0.2608	2.322	0.4493

26	Chlorine (Cl ²)	0.1145	3.163.	0.8529
27	Deuterium (D ²)	1.7325	0.1798	0.9921
28	Fluoride (F ²)	0.197	1.695	0.9255
29	Germanium Tetrachloride (GeCl ⁴)	0.1072	9.565	0.2654
30	Germane (GeH ₄)	0.1405	3.418	0.5656
31	Hydrogen (H ₂)	3.4224	0.0899	1.0040
32	Hydrogen Bromide (HBr)	0.0861	3.61	0.9940
33	Hydrogen Chloride (HCI)	0.1911	1.627	0.9940
34	Hydrogen Fluoride (HF)	0.3482	0.893	0.9940
35	Hydrogen lodide (HI)	0.0545	5.707	0.9930
36	Hydrogen Sulfide (H ₂ S)	0.2278	1.52	0.8390
37	Helium (He)	1.2418	0.1786	1.4066
38	Krypton (Kr)	00593	3.739	1.4066
39	nitrogen (N ₂)	0.2486	1.25	0.9940
40	Neon (Ne)	0.2464	0.9	1.4066
41	Ammonia (NH ₃)	0.5005	0.76	0.7147
42	Nitric Oxide (NO)	0.2378	1.339	0.9702
43	Nitrogen Dioxide (NO ₂)	0.1923	2.052	0.7366
44	Nitrous Oxide (N ₂ O)	0.2098	1.964	0.7048
45	Oxygen (O ₂)	0.2196	1.427	0.9861
46	Phosphorus Trichloride (PCI 3)	0.1247	6.127	0.3559
47	Phosphorane (PH ₃)	0.261	1.517	0.6869
48	Phosphorus Pentafluoride (PF ₅)	0.1611	5.62	0.3002
49	Phosphorus Oxychloride (POCl ₃)	0.1324	6.845	0.3002
50	Silicon Tetrachloride (SiCl ₄)	0.127	7.5847	0.2823

Densità e coefficiente di conversione per gas comuni (continua)

51	Silicon Fluoride (SiF ₄)	0.1692	4.643	0.3817
52	Silane (SiH ₄)	0.3189	1.433	0.5954
53	Dichlorosilane (SiH ₂ Cl ₂)	0.1472	4.506	0.4095
54	Trichlorosilane (SiHCl ₃)	0.1332	6.043	0.3380
55	Sulfur Hexafluoride (SF ₆)	0.1588	6.516	0.2624
56	Sulfur Dioxide (SO ₂)	0.1489	2.858	0.6829
57	Titanium Tetrachloride (TiCl ₄)	0.1572	8.465	0.2048
58	Tungsten Hexafluoride (WF ₆)	0.0956	13.29	0.2137
59	Xenon (Xe)	0.0379	5.858	1.4066

Densità e coefficiente di conversione per gas comuni (continua)

11. APPENDICE II

Valore di fondoscala per gas comuni

Unità di misura: Nm³/h. La tabella può essere estesa. Alle condizioni standard: temperatura 20 °C e pressione 101,23 kPa.

DN (mm)	Aria	Azoto	Ossigeno	Idrogeno
15	65	65	32	10
25	175	175	89	28
32	290	290	144	45
40	450	450	226	70
50	700	700	352	110
65	1200	1200	600	185
80	1800	1800	900	280
100	2800	2800	1420	470
125	4400	4400	2210	700
150	6300	63000	3200	940
200	10000	10000	5650	1880
250	17000	17000	8830	2820
300	25000	25000	12720	4060
400	45000	45000	22608	7200
500	70000	70000	35325	11280
600	100000	100000	50638	16300
700	135000	135000	69240	22100
800	180000	180000	90432	29000
900	220000	220000	114500	77807
1000	280000	280000	141300	81120
1200	400000	400000	203480	91972
1500	600000	600000	31800	10152
2000	700000	700000	565200	18048

La formula di correlazione della portata alle condizioni operative e alle condizioni standard è la seguente:

$$Qs = \frac{0.101325 + p}{0.10325} * \frac{273.15 + 20}{273.15 + t} * Qn$$

Qs: portata alle condizioni standard (Nm3/h).

Qn: portata alle condizioni operative (m3/h).

t: temperatura del gas alle condizioni operative (°C).

p: pressione del gas alle condizioni operative (pressione relativa, kPa).

SMERI s.r.l. Via Mario Idiomi 3/13 I - 20057 Assago MI Tel. +39 02 539 8941 Fax +39 02 539 3521 E-mail: smeri@smeri.com www.smeri.com

